Syncope
What’s the Issue?

Peter Netzler
Carolina Cardiology
January 30, 2016
Syncope

• I have no disclosures relevant to this talk
1. Incidence and prevalence
2. Broad differential
3. Risk Stratification
4. Work up and treatment for vasovagal syncope
5. Conclusions
Syncope:
Partial or complete loss of consciousness with interruption of awareness of oneself and one’s surroundings
SYNCOPE – Background

- Syncope is common in the general population\(^1\)
- Syncope accounts for 3-5% of Emergency Department (ED) visits and 1-3% of all hospital admissions\(^2,3\)
- Not created equal
- Cardiac syncope doubled the risk of death from any cause with a 6 mo mortality rate >10\(^%\)\(^4\)

Syncope: Pathophysiology

- Common final pathway is decreased cerebral perfusion
- Cessation of cerebral perfusion for as little as 3-5 seconds can result in syncope
- Decreased cerebral perfusion may occur as a result of decreased cardiac output or decreased systemic vascular resistance.
RISK STRATIFICATION

• Etiology can be benign…
 or deadly…
 that’s the rub…

• HISTORY alone identifies the cause up to 85% of the time

• POINTS to CONSIDER
 – Previous episodes
 – Character of the events, witnesses
 – Events preceding the syncope
 – Events during and after the episode
Syncope: Etiology

- **Neurally-Mediated**
 - Vasovagal
 - Carotid Sinus
 - Situational
 - Cough
 - Post-micturition
 - Defecation
 - Swallow
 - 66%

- **Orthostatic**
 - Drug Induced
 - Volume Depletion
 - ANS Failure
 - Primary
 - Secondary
 - 10%

- **Cardiac Arrhythmia**
 - Brady
 - Sick sinus
 - AV block
 - Tachy
 - VT
 - SVT
 - Inherited
 - 11%

- **Structural Cardio-Pulmonary**
 - Aortic Stenosis
 - HOCM
 - Pulmonary Hypertension
 - 5%

- **Non-Syncopal**
 - Psychogenic
 - Metabolic
 - Epilepsy
 - Intoxications
 - TIA
 - Falls
 - 6%

Unknown Cause = 2%

Brigole et al. Heart 2007;93:130-136
Short-Term High Risk Criteria

- Severe structural or CAD (CHF, low EF, prior MI)
- Clinical or EKG -> Arrhythmia
 - During exertion or supine
 - Palpitations
 - NSVT
 - Bifascicular block
 - Bradycardia
 - Pre-excited QRS complex
 - RBBB with ST elevation in V1-V3 (Brugada pattern)
 - Long or short QT
 - Negative T waves in right precordial leads, epsilon waves or ventricular late potentials suggestive of ARVC
- Severe anemia
- Electrolyte disturbance
Syncope Algorithm

1. **History, Physical Exam, ECG**
 - Diagnosis? Yes, certain or suspected: Treat
 - Diagnosis? No, unexplained

2. **Abnormal ECG or SHD?**
 - No: Frequent Symptoms?
 - Yes: Options: CSM, 24-Hour Holter, 30-Day Event Recorder, ICM*
 - No: Cardiac Evaluation Options: Echo, EPS, Enzymes, Exercise Test

3. **Diagnosis?**
 - Yes: Treat
 - No: ICM*

SHD = Structural Heart Disease
CSM = Carotid Sinus Massage
EPS = Electrophysologic Study
ICM* = *Provides up to 36 months of continuous monitoring

This is a general protocol to assist with the management of patients. This is not designed to replace clinical judgment or individual patient needs.
NEURALLY MEDIATED SYNCOPE

- Vasovagal, carotid sinus, situational
- Represents 66% of patients with syncope
- No increased risk for cardiovascular morbidity or mortality associated with reflex mediated syncope.
Features suggestive of Neurally-Mediated causes?

- *Prolonged* standing in a crowded, warm place
- *Preceding* nausea, feeling cold and sweaty
- *After* exertion or post-prandial
- Tonic-clonic movements are short in duration and occur *after* the loss of consciousness
- Long duration of symptoms …>4 years
Tilt-Table Test

• Indications:
 – If a neurocardiogenic cause is suspected
 – Recurrent syncope, no apparent cause, any age
 – Other evaluation unrevealing
 – Treating other potential causes ineffective

• Do not tilt if etiology is clear or if tilt has dangers

Tilt-Table Findings

<table>
<thead>
<tr>
<th>Neurocardiogenic</th>
<th>Dysautonomic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden hypotension with or without bradycardia</td>
<td>Gradual parallel decline in systolic and diastolic blood pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POTS</th>
<th>Psychogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>An excessive heart rate response to maintain a low normal BP</td>
<td>No change in heart rate, BP, EEG, transcranial blood flow</td>
</tr>
</tbody>
</table>
Heart rate and blood pressure patterns observed in head-up tilt-table testing

A Classic neurocardiogenic (vasovagal) response

<table>
<thead>
<tr>
<th>HR/BP</th>
<th>Tilt</th>
<th>Head down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B Dysautonomic response

<table>
<thead>
<tr>
<th>HR/BP</th>
<th>Tilt</th>
<th>Head down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C POTS response

<table>
<thead>
<tr>
<th>HR/BP</th>
<th>Tilt</th>
<th>Head down</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shown are the heart rate and blood pressure responses seen during tilt-table testing in patients with various etiologies of syncope including classic neurocardiogenic syncope, pure autonomic failure, or postural orthostatic tachycardia syndrome (POTS).

Implantable Loop Recorder

- Small subcutaneous implantable monitoring device
- 2009 ESC Guidelines recommend for:
 - Early phase evaluation
 - Recurrent syncope with absence of high risk features
 - Suspected or proven reflex syncope before pacing
 - Late evaluation
 - High risk syncope without etiology after exhaustive w/u
Neurocardiogenic Syncope

First line: Treatment Options

• Tilt +, High suspicion (pretest probability despite tilt -)
 – Patient education about pathophysiology of VVS and benign prognosis
 – Increase salt and water intake
 – If prodrome, sit or lie down
 – Tilt-training or counterpressure manuevers
 – Leg compression
• Tilt training: > 90% effective

1. Di Girolamo E Circulation 1999;100:1798
2. Reybrouck T PACE 2000;23:493
Neurocardiogenic Syncope

Drug Therapies: Second Line

• Beta-blockers
• SSRIs
• Midodrine
• Fludrocortisone

• Anticholinergics
 (disopyramide, scopolamine)
• Desmopressin
• Erythropoietin
• Theophylline
Beta Blockers

• Initial observations suggest syncope reduction
 – Rationale is that B-receptor involvement in ventricular baroreceptor reflexes
 – Isuprel (B agonist) can trigger hypotension and bradycardia and BB can prevent the Isuprel effect

• At least 4 randomized trials have failed to show benefit but difficult to demonstrate statistical benefit when placebo effect is so high

• Best data from the POST trial
Prevention of Syncope Trial (POST)

- 208 patients with recurrent syncope and an abnormal tilt table test
- Placebo vs metoprolol (avg dose 122mg daily) with 1 year follow up
- Recurrent syncope occurred in 36 percent of both groups.
- Withdrawal rates were 22 percent in both groups.
- Prespecified analyses according to age (categorized as <42 versus ≥42 years) and tilt table test results did not identify any subgroups that benefited with metoprolol.
Prevention of Syncope Trial (POST)

Sheldon R et al. Circulation 2006;113:1164-1170
FLUDROCORTISONE

• Corticosteroid with primarily mineralocorticoid activity
• Sodium and water retention and potassium excretion
• POST II (multinational, randomized, controlled)
• 211 pts (fludrocortisone vs placebo) for 1yr
• Trend of less events in the fludrocortisone group but NO statistical difference
MIDODRINE

- Pro-drug- active metabolite is a peripheral alpha-1 adrenergic receptor
 - Causes venoconstriction and arteriolar constriction
 - Increases cardiac output and increases peripheral resistance
- More effective than Na/volume therapy alone
- Challenge is frequent dosing compliance
- POST 4 (placebo vs midodrine) results due in 2017
SSRIs

- High serotonin levels in the nervous system
- Serotonin modulates the CNS BP and HR
- Di Gerolamo et al conducted a randomized, double-blind, placebo-controlled trial
- Paroxetine (20mg QD) vs placebo over ~25 mo
- Reduction in syncope recurrence
 - 18% with Paxil vs 53% with placebo
- Other studies have found other SSRIs of no benefit
- Can be helpful in psychosocial stressors due to syncope
Pacemakers

• Any role?
• Often a significant bradycardic response in VVS
• But severe vasodepressor reactions often coexist
Study Design:

- 54 patients randomized, prospective, single center
 - 27 DDD pacemaker with rate drop response (RDR)
 - 27 no pacemaker

Patient Inclusion Criteria:

- 6 syncopal events ever
- +HUT
- Relative bradycardia*
Risk of Syncope Recurrence

The VPS I Study

Inclusion: vasodepressor response

Control Group n = 27
Pacemaker Group n = 27

Connolly SJ. J Am Coll Cardiol 33:16-20, 1999
VPS II Trial – Big Placebo Effect

Time to First Recurrence of Syncope

- Syncope > 5 total or > 2 episodes in 2 years, positive tilt, age > 19
- RR reduction 29%

Connolly S. JAMA 2003:289:2224–2229
Study design

ILR screening phase
- Neurally-mediated syncopes
 - ILR implantation (Reveal DX/XT)
 - ILR follow-up (max 2 yrs)

ISSUE 3 study phase
- ILR eligibility criteria:
 - Asystolic syncope ≥3 s, or
 - Non-syncopal asystole ≥6 s

![Decision tree diagram](image)
ISSUE-3: Intention-to-Treat

Kaplan-Meier survival estimates

log rank: p=0.039
RRR at 2 yrs: 57%

Number at risk

<table>
<thead>
<tr>
<th>Months</th>
<th>Pm OFF</th>
<th>Pm ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>
Issue 3 Conclusions

• In patients ≥40 years with severe asystolic NMS:
 • Dual-chamber pacing reduces recurrence of syncope
 • The 32% absolute and 57% relative syncope reduction rate support use of pacing.
• The strategy of using ILR to determine indication for pacing likely explains the positive outcome and difference from prior negative results in pacemaker studies.
Carotid Sinus Syndrome (CSS)

• Syncope clearly associated with carotid sinus stimulation is rare (≤1% of syncope)

• CSS may be an important cause of unexplained syncope / falls in older individuals

CSS - Carotid Sinus Syndrome
Diagnosis

- Carotid Sinus Hypersensitivity (CSH) implies positive response to carotid massage:
 - ≥50 mmHg drop in systolic pressure
 - ≥6 sec asystolic pause
 - CSS = CSH + Reproduction of symptoms

- CSH without symptoms is not treated
- CSS needs a DDD PM

```markdown
<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>ECG波形</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 bpm</td>
<td><img src="image" alt="ECG波形" /></td>
</tr>
</tbody>
</table>
```
Conclusions

- Syncope is common
 - Diagnosis can be elusive
 - Treatment elusive
- Risk stratification is important
- Requires good history and physical
- Treatment is education first
- Remember that placebo has been very effective thus education and empowerment should be as effective
- Tilt studies and ILR monitoring can be helpful
- PPMs in select cases
 - >3s asystolic syncope,
 - Asymptomatic >6s pause
 - Carotid Sinus Syndrome
Questions?