Pediatric Stroke

David Griesemer, MD
Levine Children’s Hospital / Carolinas Healthcare
Charlotte, NC
A whole different problem

- Atherosclerosis and modifiable factors are not relevant issues
 - Populations at risk include neonates, children with congenital heart disease, patients with disorders of mitochondrial metabolism

- Presentation subtle, course stuttering, diagnosis typically delayed

- Differential diagnosis much broader

- Clinical trials for mechanical thrombolysis, anticoagulant and antiplatelet therapies not available
Suspicion of stroke

- Obstacles to evaluation
 - Victims of pediatric stroke typically ill
 - Delay in seeking care
 - Lack of history, transport without observer
 - Sleeping patient
 - Limited ability to comprehend, cooperate

- Differential diagnosis
 - Focal seizures
 - Hemiplegic migraine
 - Medication ingestion / substance abuse
Spectrum of disorders

- Perinatal stroke
 - Arterial stroke
 - Cerebral venous sinus thrombosis

- Acute arterial stroke
 - Congenital heart disease
 - Thromboembolic stroke
 - Arterial vasculopathy
 - Disorder of coagulation / fibrinolysis
 - Sickle cell disease

- Carotid dissection

- Metabolic stroke-like events

- Hypotensive stroke (watershed infarcts)
Confirmation of stroke

- CT perfusion and angiogram, including imaging of vessels of neck
- MRI and MR angiogram as second choice
- Catheter cerebral angiography
 - Suspected arterial dissection
 - Further evaluation of vasculitis of medium-sided vessels
 - Planning for revascularization with moyamoya disease
Treatment

- Mechanical thrombectomy
 - Risk/benefit data not available in children
 - Better natural outcome in children than adults
 - In brainstem stroke, 8% vs. 39% mortality
 - 60% good outcome vs. 70% poor outcome

- Thrombolytic therapy
 - Candidates rarely identified with 4.5 hr for intravenous tPA or 6 hr for intra-arterial tPA
 - Risk/benefit ratio not studied in children
 - Complication rate is higher in children; outcome without tPA more favorable in children than in adults
 - For ages 2–17, consider IV tPA 0.9 mg/kg within 3 hr of known onset
 - For significant hemiparesis, aphasia, LOC
 - Parental approval for off-label use
Anticoagulant therapy

- No good randomized, controlled data in children
- Used for dissection, cardio-embolic stroke, but not sickle cell disease
- Unfractionated heparin (UFH) preferred with high risk of hemorrhagic complication, when invasive procedures planned, when rapid reversal needed
- CT performed 3 days after initiation; if no hemorrhage UFH switched to low-molecular-weight heparin (LMWH)
- 4% risk of symptomatic hemorrhagic complication
- Practices vary widely; IPSS document use in 43%
Treatment

- Antithrombotic treatment Balance of hemorrhagic risk and risk of recurrence or extension of infarction
 - Consensus that some level of antithrombotic therapy beneficial
 - Appropriate in congenital heart disorders
 - Appropriate in arterial dissection

- No evidence of efficacy for anticoagulation
 - Intracranial hemorrhage in 4%
<table>
<thead>
<tr>
<th>ETIOLOGY</th>
<th>THERAPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perinatal stroke</td>
<td>No antithombolysis unless CHD or prothrombotic</td>
</tr>
<tr>
<td>Uncorrected CHD</td>
<td>LMW heparin / warfarin or aspirin</td>
</tr>
<tr>
<td>Corrected CHD</td>
<td>Aspirin</td>
</tr>
<tr>
<td>Moya-moya disease</td>
<td>Aspirin, revascularization</td>
</tr>
<tr>
<td>Other arteriopathy</td>
<td>Initial LMWH then LMWH or warfarin or aspirin</td>
</tr>
<tr>
<td>Idiopathic arterial ischemic stroke, no residual stenosis</td>
<td>Initial LMWH/aspirin, then aspirin 2 - 5 years</td>
</tr>
<tr>
<td>Inherited prothrombotic</td>
<td>Initial LMWH then warfarin</td>
</tr>
<tr>
<td>Postvaricella angiopathy / med-large vessel vasculitis</td>
<td>LMWH/aspirin +/- immuno-suppression when stenosis</td>
</tr>
<tr>
<td>Sickle cell disease</td>
<td>Chronic transfusion, aspirin</td>
</tr>
</tbody>
</table>
Delivery of care

- A Pediatric Code Stroke team?
 - Response time of physicians to ED
 - Qualified professional to interpret CT/CTA studies
 - Patient management? ED, hospitalist, neurosurgeon, intensivist, resident, pediatric neuro-hospitalist
 - Complexity of standardized protocol
 - Time constraints, evidence for administration of tPA
 - Suitable facility for intensive monitoring and care
 - Transportation of patient, delay in treatment
 - Practicability at both ends for tele-stroke oversight

- Use of Pediatric NIH Stroke Scale
Further consideration

- Perinatal stroke
- Cerebral venous sinus thrombosis
- Congenital heart disease
- Thromboembolic disease
- Cerebral arteriopathy
- Mitochondrial stroke-like events
Perinatal stroke: overview

- No preventative strategies
- Risk factors and presentation overlap with hypoxia-ischemia
- Prothrombotic tendencies in pregnancy, but thrombophilia rarely sole etiology
Perinatal stroke: clinical

- Commonly begins with focal seizure, often presenting >12 hours after birth
 - MCA distribution most commonly
 - Seizure control / prognosis a function of underlying global hypoxia-ischemia

- Associated with subtle hemiparesis (corticospinal innervation is bilateral at birth)
 - With deterioration of control on the good side
 - Constraint-induced movement therapy (CIMT) may help shift control to impaired hemisphere
 - Bimanual therapy combined with CIMT to induce motor learning in the brain
Perinatal stroke: evaluation

- Placental disease provides source of emboli
 - Association with chorioamnionitis / placental inflammation

- Thombophilia evaluation after age 6 weeks
Perinatal stroke: evaluation

Maternal conditions

- Acquired or inherited hypercoagulability
- Genetic disorders (Factor V Leiden, anticardiolipin)
- Autoimmune disorders (SLE)
- Hypertension in pregnancy (pre-eclampsia)
- Intrauterine infection
- Inflammatory disorders
- Trauma to mother
- Prenatal substance abuse (cocaine)
Perinatal stroke: evaluation

<table>
<thead>
<tr>
<th>Placental disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal thrombotic vasculopathy</td>
</tr>
<tr>
<td>Thrombosis (maternal surface)</td>
</tr>
<tr>
<td>Emboli from thrombotic sites (fetal surface)</td>
</tr>
<tr>
<td>Inflammatory mediators from infection</td>
</tr>
</tbody>
</table>
Perinatal stroke: evaluation

Fetal Conditions

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrops fetalis</td>
</tr>
<tr>
<td>Multiple gestation / polyhydramnios</td>
</tr>
<tr>
<td>Twin-twin transfusion syndrome</td>
</tr>
<tr>
<td>Intrauterine growth restriction (IUGR)</td>
</tr>
</tbody>
</table>
Perinatal stroke: evaluation

Neonatal Conditions

- CNS or systemic infection
- Polycythemia with hyperviscosity
- Extracorporeal membrane oxygenation (ECMO)
- Cardiac anomalies / R-to-L shunting
- Catheterization
- Sources of paradoxical emboli
- Genetic disorder of hypercoagulability
- Vascular anomaly
Perinatal stroke: outcome

- Deficits become gradually apparent over time
 - Cerebral palsy in 30 – 70%
 - Epilepsy at 6 months in 20 – 50%
 - Involvement of cerebral cortex, basal ganglia and internal capsule predicts hemiparesis

- Up to 90% ultimately become ambulatory

- Stroke recurrence risk is negligible
Cerebral venous sinus thrombosis

- Subtle in context of HIE and seizures
- Greater identification with MRI and MRV, although findings subtle
- May affect bilateral deep gray and white matter
- Presumed in term infants with IVH, especially with thalamic injury
- Mechanical factor of occipital compression of superior sagittal sinus when supine
- Thrombus progression in 5% with anticoagulation and in 30% without
Congenital heart disease

- Continuing risk since corrective surgery is often multi-step process, in part based upon need for growth
- Increased risk for extended time even after full correction

- Intraoperative variables
 - Duration of cardiopulmonary bypass
 - Duration of deep hypothermic arrest
 - Hematocrit level
 - Management of pH status
Congenital heart disease

- Limited pre-operative neurologic evaluation
 - Impact of CHD on cerebral blood flow during fetal development
 - Few pre-operative brain MRI
 - Delay in development with hypoplastic L heart and with transposition of great arteries → susceptibility to periventricular leukomalacia at all stages

- Disturbances of cerebrovascular regulation
 - Resistance lower with hypoplastic L heart
 - Resistance higher with R-sided obstructive CHD

- Maladaptive neuroplasticity and cerebrovascular autoregulation
Thrombo-embolic disease

- Mechanical thrombectomy
 - Older, larger children
 - Substantial neurologic deficit (Pediatric NIH Stroke Scale 10 – 30)
 - Occlusion of dominant cerebral artery (carotid terminus, MCA M1 segment, basilar or vertebral)
 - MRI diffusion evidence of substantial preservation of brain tissue in relevant territory
 - Under 6 hr for anterior circulation; under 24 hr for posterior circulation
 - Parental consent for off-label use
Cerebral arteriopathy

- Cause of half of childhood strokes: acquired vs. intrinsic
- Acquired: Typically in healthy children with one of two mechanisms
 - (1) Acute arteriopathy with infectious disease
 - (2) Minor head trauma
- Association with iron deficiency
- Basal ganglia stroke with transient cerebral arteriopathy, commonly at junction of distal ICA, proximal MCA and ACA
Cerebral arteriopathy

- **Intrinsic:** Multiple genetic causes of inherent arteriopathies
 - Accumulation of abnormal metabolites (Fabry Disease, homocystinuria)
 - Internal elastic lamina (ELN, ABC C6-calcification)
 - Vascular smooth muscle (NF1, ACTA2, pericentrin)
 - Vascular basement membrane (COL4A1)
 - Abnormal response to endothelial injury (SAMHD1, GLUT10, ATP7A, NF1)
 - Abnormal vascular homeostasis (NOTCH signaling pathway, NOTCH3, JAG1, TGFβ-pathway)

- Moya-moya disease as a chronic arteriopathy
Cerebral arteriopathy: outcome

- Higher incidence of hemiparesis than with perinatal stroke
- Basal ganglia involvement often leads to dystonia after 6 months
- Weaker cognitive performance with younger age and with combined cortical/subcortical involvement
- Stroke recurrence 19%, typically within 1st year
 - Congenital heart disease, arteriopathy predictive
 - Antithrombotic therapy reduces recurrence risk
Mitochondrial stroke-like events

- Acute onset of focal neurologic deficit, movement disorder, or seizures
 - Commonly triggered by infection or dehydration
- Common in MELAS and wide variety of other disorders of OX-PHOS pathway
 - Often suspected, occasionally diagnosed, typically suspect
- Diffusion changes on MRI, not in typical arterial or venous distribution
- Confusing in the context of other simultaneous metabolic decompensation
 - Cardiac arrhythmias or failure, respiratory insufficiency or aspiration, pseudo-obstruction, renal insufficiency, insulin resistance, adrenal insufficiency, electrolyte imbalance
Mitochondrial stroke-like events: treatment

- Guidelines for anticipatory management
 - Pseudo-obstruction a harbinger of stroke in MELAS
- Hydration at 150% maintenance with D10-½NS
 - Monitor renal tubular and adrenal function
 - Dangerous tachycardias, hypoventilation
- Nitric oxide precursors
 - L-arginine 10%, 500 mg/kg bolus with 300 mg/kg/d
 - Consensus for L-citrulline
- Supplements / cofactors
 - Coenzyme Q-10; L-carnitine 50 mg/kg q 6 hr
 - Avoid aspirin, acetaminophen, valproate, propofol
Resources

- Family Guide to Pediatric Stroke
 - www.strokebestpractices.ca

- International Alliance for Pediatric Stroke
 - iapediatricstroke.org